

Issues in Empirical Machine Learning Research

Antal van den Bosch

ILK / Language and Information Science Tilburg University, The Netherlands

SIKS - 22 November 2006

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10
 - The curse of interaction
 - Evaluation metrics
 - Bias and variance
 - There's no data like more data

Machine learning

- · Subfield of artificial intelligence
 - Identified by Alan Turing in seminal 1950 article Computing Machinery and Intelligence
- (Langley, 1995; Mitchell, 1997)
- Algorithms that learn from examples
 - Given task T, and an example base E of examples of T (input-output mappings: supervised learning)
 - Learning algorithm L is better in task T after learning

Universiteit + 🏥 + van Tilburg

Machine learning: Roots

- · Parent fields:
 - Information theory
 - Artificial intelligence
 - Pattern recognition – Scientific discovery
- Took off during 70s
- Major algorithmic improvements during 80s
- · Forking: neural networks, data mining

Machine Learning: 2 strands

- Theoretical ML (what can be proven to be learnable by what?)
 - Gold, identification in the limit
 - Valiant, probably approximately correct learning
- Empirical ML (on real or artificial data)
 - Evaluation Criteria:

 - Accuracy
 Quality of solutions
 Time complexity

 - Space complexity Noise resistance

Empirical machine learning

- · Supervised learning:
 - Decision trees, rule induction, version spaces
 - Instance-based, memory-based learning
 - Hyperplane separators, kernel methods, neural networks
 - Stochastic methods, Bayesian methods
- · Unsupervised learning:
 - Clustering, neural networks
- · Reinforcement learning, regression, statistical analysis, data mining, knowledge discovery, ...

Empirical ML: 2 Flavours

- Greedy
 - Learning
 - abstract model from data
 - Classification
 - · apply abstracted model to new data
- - Learning
 - · store data in memory
 - Classification
 - · compare new data to data in memory

Greedy vs Lazy Learning

Greedy

- Decision tree induction
 - CART. C4.5
- Rule induction CN2, Ripper
- Hyperplane discriminators
- Probabilistic
- Naïve Bayes, maximum entropy, HMM, MEMM, CRF
 (Hand-made rulesets)

Lazy:

- k-Nearest Neighbour
 - MBL, AM
 - Local regression

Empirical methods

- · Generalization performance:
 - How well does the classifier do on UNSEEN examples?
 - (test data: i.i.d independent and identically distributed)
 - Testing on training data is not generalization, but reproduction
- · How to measure?
 - Measure on separate test examples drawn from the same population of examples as the training examples
 - But, avoid single luck; the measurement is supposed to be a trustworthy estimate of the real performance on any unseen

n-fold cross-validation

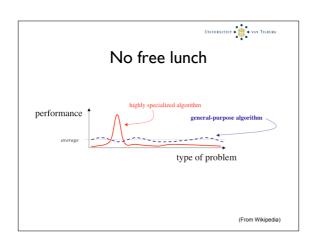
- (Weiss and Kulikowski, Computer systems that learn, 1991)
- Split example set in n equal-sized partitions
- For each partition,
 - Create a training set of the other n-1 partitions, and train a
 - Use the current partition as test set, and test the trained classifier
 - Measure generalization performance
- Compute average and standard deviation on the n

Significance tests

- Two-tailed paired t-tests work for comparing 2 10-fold CV outcomes
 - But many type-I errors (false hits)
- Or 2 x 5-fold CV (Salzberg, On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach, 1997)
- Other tests: McNemar, Wilcoxon sign test
- · Other statistical analyses: ANOVA, regression trees
- Community determines what is en vogue

No free lunch

- (Wolpert, Schaffer; Wolpert & Macready, 1997)
 - No single method is going to be best in all tasks
 - No algorithm is always better than another one
 - No point in declaring victory
- - Some methods are more suited for some types of problems
 - No rules of thumb, however
 - Extremely hard to meta-learn too



Issues in ML Research

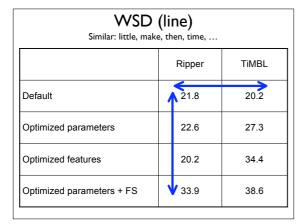
- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - Bias and variance
 - There's no data like more data

Algorithmic parameters

- Machine learning meta problem:
 - Algorithmic parameters change bias
 - Description length and noise bias
 - Eagerness bias
 - Can make quite a difference (Daelemans, Hoste, De Meulder, & Naudts, ECML 2003)
 - Different parameter settings = functionally different system
 - But good settings not predictable

Daelemans et al. (2003): Diminutive inflection

	Ripper	TiMBL			
Default	96.3	96.0			
Feature selection	96.7	97.2			
Parameter optimization	97.3	97.8			
Joint	97.6	97.9			



Known solution

- Classifier wrapping (Kohavi, 1997)
 - Training set \rightarrow train & validate sets
 - Test different setting combinations
 - Pick best-performing
- Danger of overfitting
 - When improving on training data, while not improving on test data
- Costly

Optimizing wrapping

- Worst case: exhaustive testing of "all" combinations of parameter settings (pseudo-exhaustive)
- Simple optimization:
 - Not test all settings

Optimized wrapping

- Worst case: exhaustive testing of "all" combinations of parameter settings (pseudo-exhaustive)
- Optimizations:
 - Not test all settings
 - Test all settings in less time

Optimized wrapping

- Worst case: exhaustive testing of "all" combinations of parameter settings (pseudo-exhaustive)
- Optimizations:
 - Not test all settings
 - Test all settings in less time
 - With less data

Progressive sampling

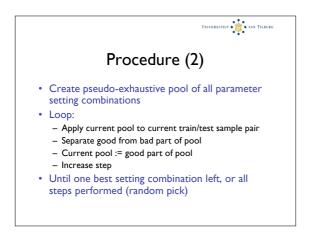
- Provost, Jensen, & Oates (1999)
- Setting:
 - I algorithm (parameters already set)
 - Growing samples of data set
- Find point in learning curve at which no additional learning is needed

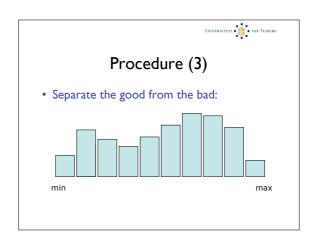
Wrapped progressive sampling

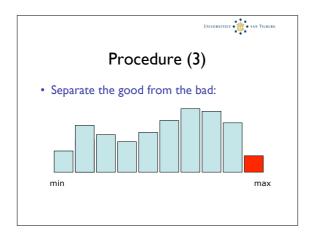
- (Van den Bosch, 2004)
- Use increasing amounts of data
- While validating decreasing numbers of setting combinations
- E.g.,
 - Test "all" settings combinations on a small but sufficient subset
 - Increase amount of data stepwise
 - At each step, discard lower-performing setting combinations

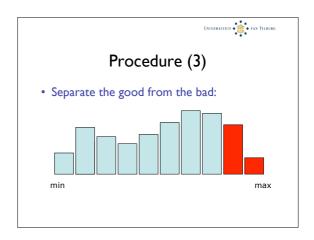
Procedure (I)

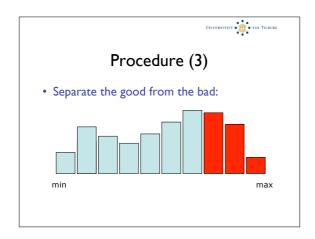
- · Given training set of labeled examples,
 - Split internally in 80% training and 20% held-out set
 - Create clipped parabolic sequence of sample sizes
 - n steps → multipl. factor nth root of 80% set size
 - Fixed start at 500 train / 100 test
 - E.g. {500, 698, 1343, 2584, 4973, 9572, 18423, 35459, 68247, 131353, 252812, 486582}
 - Test sample is always 20% of train sample

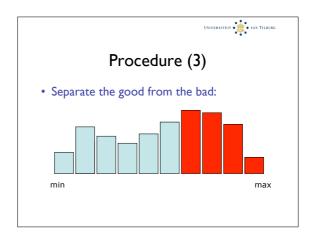


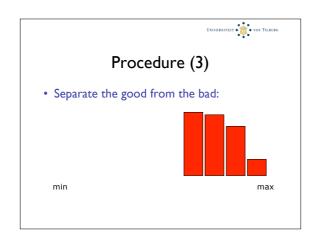


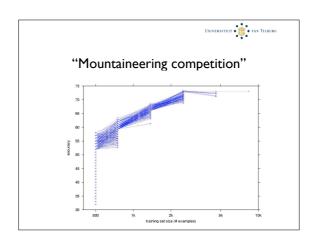


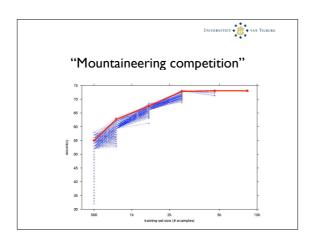


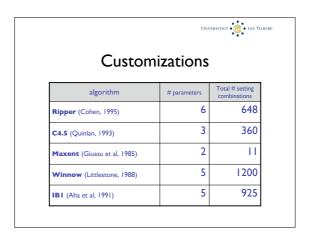


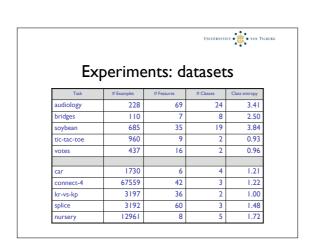


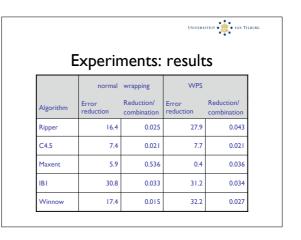












Discussion

- Normal wrapping and WPS improve generalization accuracy
 - A bit with a few parameters (Maxent, C4.5)
 - More with more parameters (Ripper, IBI, Winnow)
 - 13 significant wins out of 25;
 - 2 significant losses out of 25
- Surprisingly close ([0.015 0.043]) average error reductions per setting

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10
 - The curse of interaction
 - Evaluation metrics
 - Bias and variance
 - There's no data like more data

Evaluation metrics

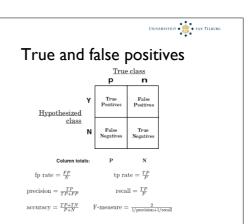
- Estimations of generalization performance (on unseen material)
- Dimensions:
 - Accuracy or more task-specific metric
 - Skewed class distribution
 - Two classes vs multi-class
 - Single or multiple scores
 - n-fold CV, leave_one_out
 - · Random splits Single splits
 - Significance tests

Accuracy is bad

- Higher accuracy / lower error rate does not necessarily imply better performance on target
- "The use of error rate often suggests insufficiently careful thought about the real objectives of the research" - David Hand, Construction and Assessment of Classification Rules (1997)

Other candidates?

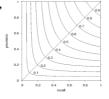
- · Per-class statistics using true and false positives and negatives
 - Precision, recall, F-score
 - ROC, AUC
- Task-specific evaluations
- · Cost, speed, memory use, accuracy within time frame



F-score is better

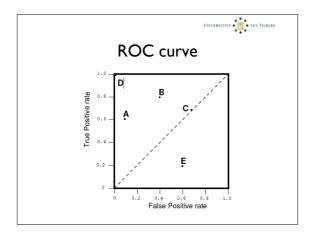
- When your problem is expressible as a per-class precision and recall problem
- (like in IR, Van Rijsbergen, 1979)

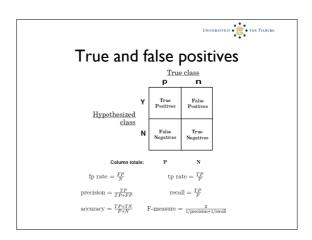
$$F_{\beta=1} = \frac{2pr}{p+r}$$

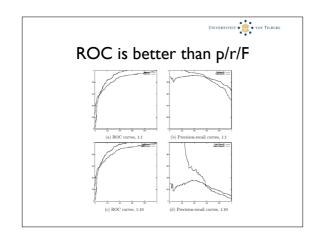


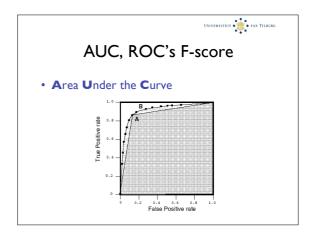
ROC is the best

- Receiver Operating Characteristics
- E.g.
 - ECAI 2004 workshop on ROC
 - Fawcett's (2004) ROC 101
- Like precision/recall/F-score, suited "for domains with skewed class distribution and unequal classification error costs."









Multiple class AUC?

- AUC per class, n classes:
- Macro-average: $sum(AUC(c_1) + ... + AUC(c_n))/n$
- Micro-average:

$$AUC_{total} = \sum_{c_i \in C} AUC(c_i) \cdot p(c_i)$$

F-score vs AUC

- Which one is better actually depends on the task.
- Examples by Reynaert (2005), spell checker performance on fictitious text with 100 errors:

System	Flagged	Corrected	Recall	Precision	F-score	AUC
Α	10,000	100	1	0.01	0.02	0.750
В	100	50	0.5	0.5	0.5	0.747

Significance & F-score

- · t-tests are valid on accuracy and recall
- · But are invalid on precision and F-score
- · Accuracy is bad; recall is only half the story
- · Now what?

Randomization tests

- (Noreen, 1989; Yeh, 2000; Tjong Kim Sang, CoNLL shared task; stratified shuffling)
- · Given classifier's output on a single test set,
 - Produce many small subsets
 - Compute standard deviation
- Given two classifiers' output,
 - Do as above
 - Compute significance (Noreen, 1989)

So?

- Does Noreen's method work with AUC? We tend to think so
- Incorporate AUC in evaluation scripts
- Favor Noreen's method in
 - "shared task" situations (single test sets)
 - F-score / AUC estimations (skewed classes)
- Maintain matched paired t-tests where accuracy is still OK.

Issues in ML Research

- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - Bias and variance
 - There's no data like more data

Bias and variance

Two meanings!

- Machine learning bias and variance the degree to which an ML algorithm is flexible in adapting to data
- Statistical bias and variance the balance between systematic and variable errors

Machine learning bias & variance

- · Naïve Bayes:
 - High bias (strong assumption: feature independence)
 - Low variance
- Decision trees & rule learners:
 - Low bias (adapt themselves to data)
 - High variance (changes in training data can cause radical differences in model)

Statistical bias & variance

- Decomposition of a classifier's error:
 - Intrinsic error: intrinsic to the data. Any classifier would make these errors (Bayes error)
 - Bias error: recurring error, systematic error, independent of training data.
 - Variance error: non-systematic error; variance in error, averaged over training sets.
- E.g. Kohavi and Wolpert (1996), Bias Plus Variance Decomposition for Zero-One Loss Functions, Proc. of ICML
 - Keep test set constant, and vary training set many times

Variance and overfitting

- Being too faithful in reproducing the classification in the training data
 - Does not help generalization performance on unseen data **overfitting**
 - Causes high variance
- Feature selection (discarding unimportant features) helps avoiding overfitting, thus lowers variance
- · Other "smoothing bias" methods:
 - Fewer nodes in decision trees
 - Fewer units in hidden layers in MLP

Relation between the two?

- Suprisingly, NO!
 - A high machine learning bias does not lead to a low number or portion of bias errors.
 - A high bias is not necessarily good; a high variance is not necessarily bad.
 - In the literature: bias error often surprisingly equal for algorithms with very different machine learning bias

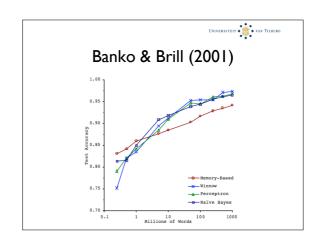
Issues in ML Research

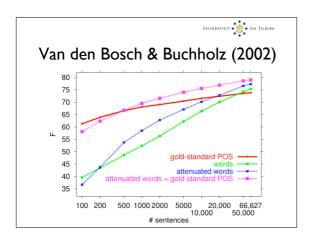
- A brief introduction
- (Ever) progressing insights from past 10 years:
 - The curse of interaction
 - Evaluation metrics
 - Bias and variance
 - There's no data like more data

Universiteit + van Tilburg

There's no data like more data

- Learning curves
 - At different amounts of training data,
 - algorithms attain different scores on test data
 - (recall Provost, Jensen, Oats 1999)
- Where is the ceiling?
- When not at the ceiling, do differences between algorithms matter?





Learning curves

- Tell more about
 - the task
 - features, representations
 - how much more data needs to be gathered
 - scaling abilities of learning algorithms
- Relativity of differences found at point when learning curve has not flattened

Closing comments

- Standards and norms in experimental & evaluative methodology in empirical research fields always on the move
- Machine learning and search are sides of the same coin
- Scaling abilities of ML algorithms is an underestimated dimension

Software available at http://ilk.uvt.nl

- paramsearch I.0 (WPS)
- TiMBL 5.1

Antal.vdnBosch@uvt.nl

Credits

- Curse of interaction: Véronique Hoste and Walter Daelemans (University of Antwerp)
- Evaluation metrics: Erik Tjong Kim Sang (University of Amsterdam), Martin Reynaert (Tilburg University)
- Bias and variance: Iris Hendrickx (University of Antwerp), Maarten van Someren (University of Amsterdam)
- There's no data like more data: Sabine Buchholz (Toshiba Research)